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Abstract: A series of pyrrole derivatives and their antioxidant scavenging activities toward the su-

peroxide anion (O2•−), hydroxyl radical (•OH), and 1,1-diphenyl-2-picryl-hydrazyl (DPPH•) served 

as the training data sets of a quantitative structure–activity relationship (QSAR) study. The steric 

and electronic descriptors obtained from quantum chemical calculations were related to the three 

O2•−, •OH, and DPPH• scavenging activities using the genetic algorithm combined with multiple 

linear regression (GA-MLR) and artificial neural networks (ANNs). The GA-MLR models resulted 

in good statistical values; the coefficient of determination (R²) of the training set was greater than 

0.8, and the root mean square error (RMSE) of the test set was in the range of 0.3 to 0.6. The main 

molecular descriptors that play an important role in the three types of antioxidant activities are the 

bond length, HOMO energy, polarizability, and AlogP. In the QSAR-ANN models, a good R² value 

above 0.9 was obtained, and the RMSE of the test set falls in a similar range to that of the GA-MLR 

models. Therefore, both the QSAR GA-MLR and QSAR-ANN models were used to predict the 

newly designed pyrrole derivatives, which were developed based on their starting reagents in the 

synthetic process. 
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1. Introduction 

Free radicals in organisms can be defined as unstable and highly reactive groups or 

molecules with unpaired electrons that are constantly produced through intracellular me-

tabolism [1]. They are harmful to the human body, not only aggravating the aging process 

but also causing a multitude of diseases, including Parkinson’s disease, Alzheimer’s dis-

ease, Huntington’s disease, depression, cardiovascular disease, cancers, etc. [2–5]. In ad-

dition to their spontaneous production in an organism, free radicals can emerge abruptly 

due to several exogenous factors, such as exposure to UV light, alcohol addiction, and 

excessive smoking [6]. Under physiological conditions, these free radicals usually include 

oxidizing substances, such as hydroxyl and superoxide anion radicals, hydrogen perox-

ide, singlet oxygen, nitric oxide, and nitroso peroxide. Many of the conditions caused by 
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these radicals can be prevented by effective antioxidant mechanisms to regulate their 

presence in the human body [7,8]. Thus, introducing an efficient antioxidant supplement 

into the body is a promising solution. 

A vast number of food-derived compounds have been identified as natural antioxi-

dants, such as tocopherols, ascorbic acid, vitamin A, coumarin derivatives, flavonoid 

groups, pyrrole derivatives, and so forth [9–14]. Reactive oxygen species (ROS) are gener-

ated in living organisms during metabolism in the form of superoxide anions (O2•−), hy-

droxyl radicals (•OH), hydrogen peroxide (H2O2), and nitric oxide (NO). Therefore, vari-

ous in vitro assays exist to measure the ROS-scavenging ability of compounds, such as 

those determining 1,1-diphenyl-2-picryl-hydrazyl (DPPH•), 2,2′-azino-bis(3-ethylbenzo-

thiazoline-6-sulfonic acid) (ABTS+•), O2•−, and •OH scavenging activity; ferric ion (Fe3+) 

and cupric ion (Cu2+) reducing power; and ferrous ion (Fe2+) and Cu2+ chelating activity, 

compared with the positive controls Trolox or BHT (standard antioxidant compounds) 

[14–16]. Numerous natural compounds are potent antioxidants. However, the extraction 

and purification of natural bioactive compounds (drugs) is time-consuming and expen-

sive [17] and, hence, not conducive to industrial manufacturing. Thus, one of the top 

trending research topics in organic chemistry is the rapid and environmentally friendly 

production of ideal (non-) natural chemicals. 

Significant progress has been made in the development of the quantitative structure–

activity relationship (QSAR) method in the field of drug discovery. Understanding the 

roles of this technique is notably useful in interpreting the molecular biological activity 

and developing new chemical designs [18]. To study the inhibitory effects of 12 wine-

extracted flavonoids on lipid peroxidation, QSAR models have been developed via poly-

nomial and multiple regression using lipophilicity and molar refractivity descriptors [19]. 

Further, the partial least square (PLS) regression and artificial neural networks (ANNs) 

approaches have been used to investigate the relationship between the biological activities 

of 35 isonicotinamide derivatives (protein kinase inhibitors of GSK-3β) and their molecu-

lar descriptors. The generated robust models with R2 values greater than 0.8 have been 

considered promising for predicting new highly active molecules for the inhibition of Alz-

heimer’s disease [20]. Recently, with the development of complex computing architec-

tures, QSAR models used for pharmacological research have been incorporated into some 

computing tools based on machine learning and deep learning algorithms, which have 

shown attractive and stable performance [21,22]. 

QSAR models relying on simple physicochemical descriptors have been described in 

early studies but are insufficient for generating comprehensive structure–activity relation-

ships [23]. The electronic descriptors obtained from quantum chemical calculations play 

a more significant role in QSAR models, especially concerning antioxidant compounds 

[24–26]. In recent years, some comparative QSAR studies have shown that employing the 

descriptors generated using quantum chemical methods can improve the accuracy of the 

results and lead to more reliable QSAR models [27–29]. Therefore, in this work, the QSAR 

technique was applied to derive a mathematical model relating the structural properties 

of pyrrole derivatives with their antioxidant activities. Three types of antioxidant activi-

ties were measured, namely, those against DPPH•, O2•−, and •OH. Ab initio quantum 

chemical calculations were employed to calculate the steric and electronic molecular de-

scriptors since the QSAR analysis was carried out on a small data set. From the many 

molecular descriptors, the genetic algorithm (GA) was used to select descriptors that re-

sulted in the best fit to models using multiple linear regression (MLR). The interpretabil-

ity, clarity, and understandability of the models presented by using MLR make it a suita-

ble choice for modeling. At the same time, the complex relationship between the molecu-

lar descriptors and their antioxidant activities provides a very good justification for using 

the ANN-based nonlinear method. The various QSAR models could be beneficial in pre-

dicting the •OH, O2•−, and DPPH• radical scavenging activities of the newly designed pyr-

role compounds, which also provide their starting chemical compounds for the synthetic 

route. 
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2. Results and Discussion 

2.1. Scavenging Activities of Studied Pyrrole Derivatives. 

Figure 1 depicts the three ROS scavenging activities of the 15 pyrrole derivatives, 

where the percentage scavenging activities toward •OH and O2•− are relatively close, in-

dicating a similar range of ROS reactivities. The values for •OH scavenging occur in the 

range of 6.365 to 9.151, and Cpd.1, 2, 3, 12, 13, 14, and 15 show more than 80% •OH scav-

enging activity. The values for the O2•- antioxidants are in the range of 6.203 to 8.644, with 

Cpd.3 and 12 showing high O2•- antioxidant activity. Regarding DPPH• scavenging, 

Cpd.11 has the lowest value, at 13.48%, while the highest activity is 76.04% for Cpd.7. It 

is worth noting that Cpd.2, 7, 12, 13, and 15 exhibit good scavenging activities for all the 

ROS types. More details about the pyrrole derivatives see at the methods section. Subse-

quently, to investigate the relationship between the ROS scavenging activities and the 

structural properties of the pyrrole derivatives, the QSAR mathematical models were ap-

plied, and both linear and non-linear models were developed for all three free radicals 

scavenging activities. 

 

Figure 1. Fifteen pyrrole derivatives with their •OH, O2•−, and DPPH• activities, expressed as (per-

cent scavenging activity)/10, (data collected from reported work [30]), were used as the training set 

in the QSAR study. 

2.2. QSAR GA-MLR Models 

Before carrying out the QSAR modeling, we first calculated the correlation coeffi-

cients of variable pairs, based on the preset definitions of the antioxidant activities as the 

dependent variables and the molecular descriptors as the independent variables. The val-

ues of the pairwise correlation coefficient, r, lie between 1 and −1; the correlation coeffi-

cients are all presented in the correlation matrix heatmap (Figure 2). Some of the de-

scriptors show similar importance concerning Y1 and Y2; the most significant is the C4–

C11 bond length, and its coefficients with Y1 and Y2 are −0.73 and −0.71, respectively. This 

can be explained by noting that the shorter C4–C11 bond length leads to better antioxidant 

activity in scavenging •OH and O2•− free radicals. The charges of O8 and O12 are the next 

two important features, both of which show negative effects on antioxidant activities, with 

the absolute value of the correlation coefficients exceeding 0.5. Therefore, more negative 

charges on these two oxygen atoms helps improve the ROS scavenging efficiency of the 

pyrrole derivatives. 
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Figure 2. Pearson correlation coefficients of scavenging activities toward •OH (Y1), O2•− (Y2), and 

DPPH• (Y3), with the related properties. 

Examining the correlation coefficients between the descriptors and the DPPH• scav-

enging activity, Y3, shows that the N1-C13 bond length is highly correlated with the latter, 

with a value of 0.75, but has little effect on the other two types of free radical scavenging 

activities. AlogP, which reflects molecular hydrophobicity, is the second important de-

scriptor for improving Y3 performance, with an r value of −0.49. Thus, hydrophilicity and 

longer distances between the R(d) substituent and pyrrole ring of the antioxidants are 

preferred in achieving a higher DPPH• quenching ability. Table 1 presents the QSAR 

model results using the GA-MLR method. 

QSAR GA-MLR of •OH model. Equation (1) (see Table 1) is the QSAR model obtained 

from the GA-MLR method for •OH scavenging activity. The model yields good statistical 

values, with R2 = 0.848 and R2(CV) = 0.711. The regression is significant since F > Fcr. Equa-

tion (1), Y1 (•OH scavenging activity) = −90.879 * X17 (bond C2-R(b)) − 47.988 * X19 (bond 

C4-C11) + 0.016 * X20 (polarizability) + 207.384, implies that the steric structural properties 

(C2-R(b) and C4-C11 bonds) play an important role in the •OH scavenging activity, while 

the electronic polarizability is a minor property. Further, the negative coefficient values 

of X17 and X19 suggest that the shorter bond distances of C2-R(b) and C4-C11 are favor-

able in increasing the •OH scavenging activity. 
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Table 1. QSAR model results via the GA-MLR method. 

Equation Definitions R2 R2(CV) b F c Fcr (0.05) 

Equation (1) a Y1 = −90.879 * X17  

 −47.988 * X19  

 +0.016 * X20  

 +207.384 

X17: Bond C2-R(b) 

X19: Bond C4-C11 

X20: Polarizability 

0.848 0.711 14.917 4.236 

Equation (2) Y2 = −43.836 * X19  

 +0.005 * X20 

 −75.277 * X21  

 + 47.527 

X19: Bond C4-C11 

X20: Polarizability 

X21: HOMO energy 

0.863 0.731 16.770 4.236 

Equation (3) Y3 = 61.220 * X16  

 −1.240 * X26  

 +0.052 * X30  

 −102.072 

X16: Bond N1-C13 

X26: AlogP 

X30: Connolly surface area 

0.810 0.559 11.388 4.236 

a Y1, Y2, and Y3 represented the scavenging activities of compounds to three kinds of radicals •OH, 

O2•− and DPPH• respectively. b Calculated F value of the generated model. c Critical point of the F 

distribution of degrees n − p and p − 1 evaluated for probability 0.05 (at 95% confidence level). If F 

> Fcr, the regression is significant. 

QSAR GA-MLR of O2•− model. The QSAR model obtained from the GA-MLR method 

for O2•− scavenging activity is given in Equation (2) (Table 1), with R2 = 0.863 and R2(CV) 

= 0.731. The linear regression model is significant since F > Fcr. Considering Equation (2), 

Y2 (O2•− scavenging activity) = −43.836 * X19 (bond C4-C11) + 0.005 * X20 (polarizability) − 

75.277 * X21 (HOMO energy) + 47.527, both electronic (HOMO energy) and steric proper-

ties are mainly related to the O2•− scavenging activity. In Equation (2), X19 has a negative 

coefficient, implying that the shorter bond distance of C4-C11 (see the position in Figure 

5) is favorable in increasing the O2•− scavenging activity, similar to the case in Equation (1) 

for the •OH scavenging activity. Regarding the HOMO energy, the pyrrole derivatives 

with higher values are preferable in increasing the O2•− scavenging activity. Further, Y1 

(•OH scavenging activity) and Y2 (O2•− scavenging activity) have a high Pearson correla-

tion coefficient of 0.84; from the molecular properties related to these ROS, X19 and X20 

are common to both models. 

QSAR GA-MLR of DPPH• model. The QSAR model for DPPH• scavenging activity 

developed using the GA-MLR method is given in Equation (3) (see Table 1). The statistical 

results include R2 and R2(CV) values of 0.810 and 0.559, respectively, which are slightly 

lower than those of the •OH and O2•− scavenging activity models. The DPPH• scavenging 

activity (Y3) is related to the N1-C13 bond, AlogP, and the Connolly surface area, as 

shown in Equation (3): Y3 = 61.220 * X16 (N1-C13 bond) − 1.240 * X26 (AlogP) + 0.052 * X30 

(Connolly surface area) − 102.072. The bond distance of N1-C13 (see the position in Figure 

1) has the highest (positive) coefficient value, suggesting that a longer bond distance 

would support the DPPH• scavenging activity, which corresponds well with experimental 

discussions [30]. The second notable feature is that molecules with lower AlogP values are 

preferred, that is, antioxidants need to be more hydrophilic to have a higher quenching 

ability toward radicals. In addition, the compounds with higher values of Connolly sur-

face area are beneficial to improve the DPPH• scavenging activity; however, this property 

only plays a minor role in the DPPH• scavenging activity. 

The molecular descriptors used in Equations (1)–(3) of the QSAR GA-MLR models 

consist of steric and electronic properties (Table 2). The important descriptors from the 

QSAR models correspond well with the Pearson correlation coefficients of the •OH, O2•−, 

and DPPH• scavenging activities. Figure 3a–c depict the linear relationship between the 

experimental and predicted •OH, O2•−, and DPPH• scavenging activities, and the 
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predicted results are listed in Table S1. Based on the residuals between the predicted and 

actual activities, the RMSE of the training set (RMSE train) of the •OH, O2•−, and DPPH• 

scavenging activities were calculated as 0.368, 0.269, and 0.958, respectively, as shown in 

Figure 3a–c. To evaluate the feasibility of the QSAR models, the test set (Cpd.6, 8, and 11) 

predicted the compounds’ •OH, O2•−, and DPPH• scavenging activities using Equations 

(1)–(3), respectively. The RMSE values of the test set (RMSE test) of the •OH and DPPH• 

scavenging activities (Figure 3a,c) are lower than the RMSE train values, while the RMSE 

test for O2•− scavenging is slightly higher than the RMSE train (Figure 3b). Therefore, in 

summary, the QSAR GA-MLR technique helps manipulate mathematical models for lim-

ited data sets. Furthermore, the obtained models could be used for further predictions of 

newly designed pyrrole compounds to demonstrate their good predictive power in exter-

nal evaluations.  

 

Figure 3. Experimental vs. predicted •OH, O2•−, and DPPH• scavenging activities (percent scaveng-

ing activity/10) for training and test sets. The predicted data were obtained from QSAR GA-MLR 

(a–c) and QSAR-ANN (d–f) models. 

Table 2. Selected descriptors’ names and descriptions. 

Descriptors Group Type Definition 

X16: Bond N1–C13 Steric The bond distance between atoms N1 and C13. 

X17: Bond C2-R(b) Steric The bond distance between atom C2 and substituent R(b). 

X19: Bond C4–C11 Steric The bond distance between atoms C4 and C11. 

X20: Polarizability Electronic The relative tendency of charge distribution in a molecule. 

X21: HOMO energy Electronic The energy of the Highest Occupied Molecular Orbital. 

X26: AlogP 
Hydropho-

bic 
the logarithm of the octanol/water partition coefficient. 

X30: Connolly surface 

area 
Steric 

The surface area of an atom volume surface, derived from the Connolly 

algorithm. 
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2.3. QSAR ANN Models 

The ANN models originate from Artificial Intelligence, which is an interconnected 

assembly of simple processing elements, known as artificial neurons, that mimic human 

neuron functions. Consequently, the input of each neuron is one or more weighted varia-

bles, and the output is a linear or nonlinear function of the weighted inputs. Alternatively, 

the neurons learn by adjusting the weights of the input variables by minimizing the error 

between the neuron’s expected output and the measured output value. Therefore, we ap-

plied the QSAR-ANN technique for the •OH, O2•−, and DPPH• scavenging activities and 

the selected molecular descriptors (Table 2). The ANN architecture was set as 3-3-1, with 

one input layer (three neurons), one hidden layer (three neurons), and one output layer, 

according to the descriptors found in Equations (1)–(3) for the •OH, O2•−, and DPPH• scav-

enging activities, respectively. The optimal ANN models of the three ROS are given in 

Table 3. The statistical R2 values of the ANN models are in the range of 0.920–0.965, which 

is higher than that of the GA-MLR models (R2 values in the range of 0.810–0.863). The 

linear plots of the experimental versus predicted •OH, O2•−, and DPPH• scavenging activ-

ities from the ANN models are displayed in Figure 3d–f, respectively. The RMSE train 

values of all ANN models fall in the range of 0.175–0.427, which is much lower than that 

of the GA-MLR models. However, the RMSE test values of the ANN models are compa-

rable to the results from the GA-MLR ones. 

In summary, as shown in Table 3, the ANN learns to predict the antioxidant activity 

with higher accuracy, approximating the experimental data with small differences (see 

the predicted data in Table S1). Therefore, the three ANN models can be used to predict 

the antioxidant activity of the newly designed pyrrole compounds. 

Table 3. Comparison of QSAR model results using the GA-MLR and ANN methods. 

Model 
GA-MLR ANN 

R2(train) RMSE(train) RMSE(test) R2(train) RMSE(train) RMSE(test) 
•OH 0.848 0.368 0.307 0.965 0.175 0.395 

O2•− 0.863 0.269 0.325 0.920 0.213 0.249 

DPPH• 0.810 0.958 0.600 0.961 0.427 0.626 

2.4. Newly Designed Compounds with Predicted ROS Activities 

Scheme 1 provides insight into the newly designed pyrrole antioxidants. Firstly, 4-

hydroxycoumarin (1a) and 2-hydroxy-1,4-naphthoquinone (1b) were selected for substi-

tution at the R(a) position since they appeared in Cpd.2, 12, and 15, which gave superior 

ROS activities. Secondly, at the R(b) substituent position, a thiophene ring was chosen as 

it resulted in shortening the C2-R(b) bond distance, as observed in the X17 property of 

Cpd.3, 8, and 15 (Table S2). Next, in the R(c) position, the substitution of cyclohexanone 

or benzoyl groups has a prevailing impact on the scavenging activity, as seen in Cpd.1, 2, 

12, and 14. In addition, this position is related to X19 (bond C4-C11); the shorter the bond 

distance, the more preferable the antioxidant activity. Lastly, regarding the R(d) position, 

related to the X16 property (bond N1-C13), a longer N1-C13 bond distance would support 

improved antioxidant activity. Thus, three functional groups—4-methoxyphenyl, n-bu-

tylamine, and phenylethylamine—were selected for substitution at the R(d) position. In 

summary, there are 17 new compounds, Cpd.16 to Cpd.32 (Scheme 1). All new complex 

structures were built and optimized by employing the same computational level criteria 

as those for the training set compounds (see at methods section). The structural and elec-

tronic properties were then collected and are presented in Table S3 for the predicted •OH, 

O2•−, and DPPH• scavenging activities of all newly designed molecules. 
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Scheme 1. Designing new pyrrole compounds, with codes of starting reactants and substitutional 

R(a), R(b), R(c), and R(d) codes. 

The •OH, O2•−, and DPPH• scavenging activities of newly designed pyrrole com-

pounds were then predicted by using both QSAR GA-MLR and QSAR-ANN (see in Table 

S4). The plots of number of compounds with their predicted •OH, O2•−, and DPPH• scav-

enging activities are depicted in Figure 4. The •OH and O2•−prediction results obtained 

from the two models shares a similar trend, while the predicted DPPH• scavenging activ-

ities from GA-MLR and ANN showed some partial differences. It is worth noting that 

there are seventeen, and nine new pyrrole compounds were predicted to achieve more 

than 80% of •OH and O2•− scavenging activities, respectively (Table S4). For the predicted 

DPPH• scavenging activities above 70%, there are found on Cpd.26, 27, 31, and 32 (Figure 

6). In addition, these four new compounds have also resulted in great •OH and O2•− scav-

enging activities. 

In summary, our newly designed pyrrole compounds (Cpd.16–Cpd.32) based on the 

QSAR molecular descriptors showed the higher tendency of •OH, O2•−, and DPPH• scav-

enging activities in comparison with training data of pyrrole derivatives (see in Figure 

S1). 
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Figure 4. Predicted antioxidant activities toward •OH, O2•−, and DPPH• of the newly designed com-

pounds obtained via the (a) GA-MLR and (b) ANN methods. 

3. Methods 

Experimental activities data. In the current QSAR study, we employed 15 pyrrole 

derivatives and obtained their experimental radical scavenging activities (Figure S2 and 

Table S5) from Tania et al. [30]. Figure 5 depicts the template of a pyrrole ring with four 

substitution positions. Three types of radical scavenging activities (against •OH, O2•−, and 

DPPH•) were measured for all the pyrrole derivatives (Figure 6) and used as the data sets 

in this work. Therefore, we represented the •OH, O2•−, and DPPH• radical scavenging ac-

tivities with three dependent variables: Y1, Y2, and Y3, respectively. 

 

Figure 5. The main skeleton of pyrrole derivatives. 

Molecular Features. To obtain the electronic and steric molecular descriptors, all the 

pyrrole derivatives were built and optimized using the Hartree–Fock (HF) functional and 

the 6-31G(d,p) basis set, which includes the polarization functions of all atoms in the struc-

ture. The optimizations were performed with the Gaussian 16 program [31]; the optimized 

structures were analyzed, and 23 of their molecular properties, denoted as X1–X23, were 
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recorded (Table S2). Furthermore, additional molecular properties, denoted as X24–X33 

(Table S2), were obtained using the Materials Studio software [32], leading to a total of 33 

independent variables in this work. 

 

Figure 6. Pyrrole derivatives and their radical scavenging activities. The data are expressed as the 

(percent scavenging activity)/10 toward a •OH at a compound concentration of 80 μM (in italics), b 

O2•− at 20 μM (in bold), and c DPPH• at 90 μM (in normal font) [30]. 

Data sets. The data of pyrrole derivatives were divided into a training set (80%) and 

a test set (20%) according to the Kennard–Stone algorithm [33] using the Python package 

Kennard-stone 1.1.2. Based on this algorithm, Cpd.6, 8, and 11 were selected as the test-

set compounds, that is, for use as the external test set to evaluate the generalization per-

formance of the regression models. 

GA-MLR method. Inspired by natural genetics and evolution, genetic function ap-

proximation (GFA) is an approach that emphasizes achieving model-building optimiza-

tion. The GFA method has been used in the development of QSAR models and has 

demonstrated the ability to elucidate the relationship between the desired molecular ac-

tivity and chemical identity [34,35]. It automatically selects variables and effectively dis-

covers combinations of features that take advantage of correlations between multiple fea-

tures. The maximum number of variables is established by fixing the preferred model 

length. Additionally, the GFA algorithm can work flexibly with or without spline curves 

[36], which increases the complexity of the model, though at the expense of reducing its 

interpretation ability. The expression of the output equation without splines is the same 

as that of the MLR model. Therefore, the MLR model based on the GFA algorithm (GA-

MLR) can provide an “understanding” of important molecular characteristics for the ac-

tivity of compounds. One notable feature of the GFA is that it can generate a set of models, 

rather than a single model, at once. The workflow of the GA can be summarized as a basic 

function of genetic selection. After crossover and mutation operations, new generations 

will be generated. Each new model is then scored according to a specific fitness criterion. 
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The regression analysis was developed using the GFA module in Materials Studio. 

Initially, the training data was fully imported, with the maximum equation length set at 3 

and the population and maximum generations set to 1000 and 500, respectively. The mu-

tation probability was 0.1. The fitness of a GFA model was measured using the R-squared 

(R2) value, which reflects the fraction of the total variance of the dependent variable, y; the 

larger the R2 value, the better the model. 

ANN method. ANN is a nonlinear-function mapping technique originally developed 

to simulate the structure and computations of the brain. In the field of cheminformatics, 

it has been widely used to study the complex nonlinear relationship between the biologi-

cal activity of molecules and their structural characteristics [37–40]. In this study, one of 

the most popular neural networks, the multilayer perceptron (MLP) ANN, which served 

as the function approximation method, was used to model the antioxidant activities and 

structural properties data [41]. The MLP network designed herein is based on the princi-

ple of the backpropagation algorithm and was optimized using the Levenberg–Marquardt 

technique to reduce the error [42]. Generally, the MLP network includes three types of 

neural layers: an input layer, one or more hidden layers, and an output layer. 

The running script was generated using the neural network fitting tool in the 

MATLAB program [43], and a multilayer ANN structure composed of three input neu-

rons, an implicit layer (three neurons), and an output layer (one neuron) was constructed. 

In our ANN regression task, the Bayesian regularization backpropagation algorithm was 

used to optimize and update the weights and biases, which are the network optimization 

functions according to the Levenberg–Marquardt algorithm. The optimal combination 

was determined by minimizing the combination of the square error and the weight to 

generate a network model with a good generalization ability. This process is also known 

as Bayesian regularization. 

Evaluation of statistical terms. This section discusses the equations used to evaluate 

the prediction reliability of the QSAR models. The coefficient of determination (R²) 

measures how well a statistical model predicts an outcome. It is the proportion of variance 

in the dependent variable that is explained through the model; the closer the value is to 

1.0, the better the genetic function approximation equation explains the dependent varia-

ble. The expression for R2 is given using Equation (1): 

�� =  
���

���
 , (1)

where ESS is the sum of squares of errors (or the explained sum of squares), and TSS is 

the total sum of squares of y. The variation in y not explained through the regression equa-

tion (or the residual sum of squares, RSS) is the sum of the squares of the differences be-

tween the predicted values (�́�) and the actual (��) as given in Equation (2): 

��� =  � (�́� − ��)�
�

���
 (2)

The total variation in y (or the total sum of squares, TSS) is the sum of the squares of 

the differences between the observed y values (��) and their mean (��). It can also be de-

scribed as the mean-corrected sum of squares of the responses over the entire data set. The 

TSS is given as in as in Equation (3): 

��� =  � (�� − ��)�
�

���
 (3)

The TSS is also expressed as in Equation (4): 

��� = ��� + �� (4)

The variation in y explained through the regression equation (ESS) is the sum of the 

squares of the differences between the predicted y values (�́�) and the mean (��), as given 

in Equation (5): 
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��� = � (�́� − ��)�
�

���
 (5)

The F test is a standard statistical test to assess the equality of the variances of two 

populations with normal distributions. Here, it was used to test whether the variance in 

the data that is explained through the regression is significantly larger than the remaining 

variance due to errors. If this is the case, the model is then stated to be significant rather 

than one that simply fits the noise. The significance-of-regression (SOR) F value is defined 

in Equation (6): 

� =
���/(� − 1)

���/(� − �)
 (6)

where n is the number of data points from which the model is built, and p is the number 

of parameters in a regression model (including the intercept, when present). 

The calculated F value was compared with the tabulated values of the F distribution 

for different values of n and p. The critical SOR F value is the critical point of the F distri-

bution of degrees n − p and p − 1 evaluated for a probability of 0.05 (at a 95% confidence 

level). The regression is significant if F is greater than the tabulated value Fcr, or SOR F 

value (95%). 

The cross-validation R2, or R2(CV), is the cross-validated equivalent of R2, which con-

stitutes a crucial measure of a model’s predictive power; the closer the value is to 1.0, the 

better the predictive power. For a good model, R2(CV) should be reasonably close to R2. 

R2(CV) is expressed as in Equation (7): 

��(��) = 1 −
�����

���
 (7)

The cross-validation involved excluding the required set of data, performing the 

principal component analysis (PCA) on the remaining data, and calculating the PRESS of 

the prediction error based on the model generated using the retained data, which was 

excluded from model development. This process was repeated until each observation was 

ignored. The PRESS is calculated as in Equation (8): 

�����(�) =  � (�� − �́�)
�

�

���
 (8)

The root mean square error (RMSE) is used to determine whether a model has the 

predictive ability, reflected using R2, to ensure its rationality from a statistical perspective. 

The RMSE is the square root of the sum of the squared differences between the actual and 

predicted values divided by the number of observations, N, as given in Equation (9). It 

measures deviations from true values and is sensitive to divergent data. 

���� =  �
�

�
∑ (�� − �́�)

��
���   (9)

4. Conclusions 

The QSAR concept was applied to understand the influence of substitutions on pyr-

role derivatives and their •OH, O2•−, and DPPH• scavenging activities. Both the GA-MLR 

and ANN techniques were applied to relate the quantitative relationships between the 

three types of antioxidant activities of the pyrrole derivatives and their molecular de-

scriptors, which were determined from quantum chemical calculations. In the QSAR GA-

MLR models, the statistical coefficient of determination, R2, was greater than 0.8, while 

the QSAR-ANN models yielded superior R2 values (greater than 0.9), both of which 

showed high predictive ability. The RMSE of the test set was introduced to evaluate the 

prediction reliability of all QSAR models; the RMSE values were in the range of 0.3–0.6, 

which implies that the models can be used for further predictions. However, the RMSE of 

the ANN models test set did not outperform substantially in comparison with the GA-
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MLR model. Thus, in this case, the resulted GA-MLR model have equivalent prediction 

reliability with the ANN model. The obtained QSAR GA-MLR models, both steric (bond 

lengths and Connolly surface area) and electrostatic (HOMO energy and polarizability) 

properties, played an important role in the three types of antioxidant activities equations. 

Finally, based on the QSAR GA-MLR and QSAR-ANN models, most of the predictions 

for the •OH, O2•−, and DPPH• scavenging activities of the newly designed pyrrole com-

pounds were more effective than those of the training set pyrrole derivatives. Based on 

our findings, the newly designed compounds Cpd.26, 27, 31, and 32 were predicted via 

both the GA-MLR and ANN models to be potent and effective antioxidants against •OH, 

O2•−, and DPPH•, which would be useful in further experimental syntheses and tests. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/molecules28041596/s1, Details of starting reagents with 

codes for pyrrole derivatives synthesis; molecular properties of 15 studied compounds and new 

designed compounds; new designed compounds structures and their predicted radical scavenging 

activities from QSAR GA-MLR and ANN models; comparation of designed compounds prediction 

results via GFA and ANN methods. Table S1. Experimental and predicted radical scavenging activ-

ities of 15 studied compounds from QSAR GA-MLR and ANN models. Table S2. 33 molecular prop-

erties of 15 pyrrole derivatives. Table S3. 33 molecular properties of 17 new designed pyrrole deriv-

atives. Table S4. 17 new designed compounds structures and their predicted radical scavenging ac-

tivities from QSAR GA-MLR and ANN models. Figure S1. Experimental activities of previous syn-

thesized compounds (1-15) and predicted antioxidant activities of new designed compounds (16-

32) by ANN models. Figure S2. Starting reagents with codes and pyrrole derivatives’ skeleton dia-

gram with atom labels. Table S5. 15 Pyrrole derivatives and their radical scavenging activities. 
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